YiQiFuMai Powder Injection Protects against Ischemic Stroke via Inhibiting Neuronal Apoptosis and PKCδ/Drp1-Mediated Excessive Mitochondrial Fission
نویسندگان
چکیده
YiQiFuMai (YQFM) powder injection has been reported to be used in cardiovascular and nervous system diseases with marked efficacy. However, as a treatment against diseases characterized by hypoxia, lassitude, and asthenia, the effects and underlying mechanisms of YQFM in neuronal mitochondrial function and dynamics have not been fully elucidated. Here, we demonstrated that YQFM inhibited mitochondrial apoptosis and activation of dynamin-related protein 1 (Drp1) in cerebral ischemia-injured rats, producing a significant improvement in cerebral infarction and neurological score. YQFM also attenuated oxidative stress-induced mitochondrial dysfunction and apoptosis through increasing ATP level and mitochondria membrane potential (Δψm), inhibiting ROS production, and regulating Bcl-2 family protein levels in primary cultured neurons. Moreover, YQFM inhibited excessive mitochondrial fission, Drp1 phosphorylation, and translocation from cytoplasm to mitochondria induced by oxidative stress. We provided the first evidence that YQFM inhibited the activation, association, and translocation of PKCδ and Drp1 upon oxidative stress. Taken together, we demonstrate that YQFM ameliorates ischemic stroke-induced neuronal apoptosis through inhibiting mitochondrial dysfunction and PKCδ/Drp1-mediated excessive mitochondrial fission. These findings not only put new insights into the unique neuroprotective properties of YQFM associated with the regulation of mitochondrial function but also expand our understanding of the underlying mechanisms of ischemic stroke.
منابع مشابه
Ginkgolide K attenuates neuronal injury after ischemic stroke by inhibiting mitochondrial fission and GSK-3β-dependent increases in mitochondrial membrane permeability
Ginkgolide K (GK) belongs to the ginkgolide family of natural compounds found in Ginkgo biloba leaves, which have been used for centuries to treat cerebrovascular and cardiovascular diseases. We evaluated the protective effects of GK against neuronal apoptosis by assessing its ability to sustain mitochondrial integrity and function. Co-immunoprecipitation showed that Drp1 binding to GSK-3β was ...
متن کاملAberrant mitochondrial fission in neurons induced by protein kinase Cδ under oxidative stress conditions in vivo
Neuronal cell death in a number of neurological disorders is associated with aberrant mitochondrial dynamics and mitochondrial degeneration. However, the triggers for this mitochondrial dysregulation are not known. Here we show excessive mitochondrial fission and mitochondrial structural disarray in brains of hypertensive rats with hypertension-induced brain injury (encephalopathy). We found th...
متن کاملParkin Protects against Oxygen-Glucose Deprivation/Reperfusion Insult by Promoting Drp1 Degradation
Ischemic stroke results in severe brain damage and remains one of the leading causes of death and disability worldwide. Effective neuroprotective therapies are needed to reduce brain damage resulting from ischemic stroke. Mitochondria are crucial for cellular energy production and homeostasis. Modulation of mitochondrial function mediates neuroprotection against ischemic brain damage. Dynamin-r...
متن کاملMitochondrial Division Inhibitor 1 (mdivi-1) Protects Neurons against Excitotoxicity through the Modulation of Mitochondrial Function and Intracellular Ca2+ Signaling
Excessive dynamin related protein 1 (Drp1)-triggered mitochondrial fission contributes to apoptosis under pathological conditions and therefore it has emerged as a promising therapeutic target. Mitochondrial division inhibitor 1 (mdivi-1) inhibits Drp1-dependent mitochondrial fission and is neuroprotective in several models of brain ischemia and neurodegeneration. However, mdivi-1 also modulate...
متن کاملElectroacupuncture preconditioning protects against focal cerebral ischemia/reperfusion injury via suppression of dynamin-related protein 1
Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017